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Abstract

We analyse the performances of two different configurations of a tuning fork microgyrometer, the so called ‘wide gap’

design and ‘narrow gap’ design. In the former case the air gap between the vibrating forks and the walls of the surrounding

frame is so large that the air flow around each fork is not influenced by the presence of the frame itself. This geometrical

configuration results in a very low air damping, and, hence, allows the instrument to operate at atmospheric pressure. In

the case of ‘narrow gap’ design the distance between the forks and the frame walls is instead very small. As a consequence,

the instrument needs to operate under very low pressure conditions, since, at higher pressures, the presence of a thin layer

of air would increase the air damping to very large values, and would not allow the correct operation of the instrument.

Although the requirement of low pressure conditions represents a drawback of the narrow gap solution, we show that this

instrument configuration, when compared to the wide gap design, allows to achieve a significantly smaller dynamic error

and a significantly wider range of linearity. Indeed the thickness of the air gap represents an additional parameter that can

be adjusted by the designer to optimise the performances of the instrument. An accurate analytical model of the sensor is

presented in the paper, which constitutes a helpful designing tool for this kind of device. In particular we focus the

attention on the two tines of the drive mode, which are indeed the structural components that more than others influence

the instrument performances. We show that the optimal design of these fundamental elements can be obtained by

neglecting the interaction with the remaining part of the sensor structure, and show how to design the instrument to

minimise the amplitude error. The influence of air damping, structural damping and geometry on the system response in

terms of bandwidth and dynamic error is also investigated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A microgyroscope is an angular rate sensor that uses the effect of the Coriolis force acting on a
reciprocating proof mass to measure the angular velocity of the device. There are two kinds of motions of the
mass, the input or drive motion and the output or sense motion. Recently a great number of microgyroscopes
has been developed with different design. There are oscillators that realise the two motions in two orthogonal
planes [1–5] or in the same plane [6–8] and devices that use a silicon cantilever beam [9–13] or a ring-type
structure [14]. Furthermore they can use many principles of actuation and detection, such as piezoelectric [15],
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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optical [12], electrostatic [2] and piezoresistive [10]. For all these devices the research effort has been focusing
on the improvement and the optimisation of the output signal quality, measured by the so called ‘sensitivity’
(that is the ratio between the amplitude of the output motion and the angular velocity to be measured), and by
the resolution of the instrument. The methods more often employed to improve the instrument performances
are (i) the matching of the drive and sense resonant frequencies [6,7], (ii) the reduction of air pressure, i.e. of
the air damping [2,5,16], (iii) the designing of symmetrical structures [6,7] and (iv) the adoption of independent
beams for the two modes [1]. However the enormous demand of such devices from automotive, aeronautics,
mobile phone and robotics market, has led to a fast development of simple models to describe the dynamic
behaviour of these sensors [1,8,10,12–14]. Two degrees of freedom lumped models are often utilised for the
design of these systems. However, the simplicity of such models limits the possibility of optimising the design
of the instrument to get better performances.

With the purpose of providing a more advanced tool to designers, in this paper we have developed an
accurate, mass-distributed, analytical model to describe the dynamics of a double tuning fork microgyroscope.
Our interest is, indeed, directed to the determination of the main functional parameters which the instrument
operation depends on and to the optimisation of the instrument performances by choosing the appropriate
values of those parameters (physical or geometrical) which the designer is free to modify.

In the most common design these devices operate at atmospheric pressure with an air gap large enough to
allow to neglect the presence of the substrate on the evaluation of the drag force acting on the structural
elements. The air damping, being related to the fluid viscosity, depends on the environmental pressure.
However, in this paper, we have also considered a different possible design characterised by the presence of a
really narrow air gap between the structure and the substrate. In this case the air damping is strongly affected
by the thickness of the gap, and if the air pressure were kept at the atmospheric value, this would lead to very
high damping factors, and, in turn, would prevent the correct operation of the instrument. For this reason, the
narrow gap configuration requires the device be vacuum-encapsulated.

We analyse and compare the dynamic responses of both the instrument designs (wide gap and narrow gap)
by focusing the attention on the drive mode structural components, which significantly influence the
performance of the whole instrument. In particular our analysis is concerned with the drive beams, that
undergo two different motions: one is parallel to the rotating substrate, and will be referred to as the drive
motion, the other one occurs along the perpendicular direction (the sense motion). A continuum description of
the drive beam has been developed for both the considered sensor configurations and the resulting
mathematical equations have been analytically solved for both the cases examined. The model takes into
account the influence of different damping mechanisms: the air damping and the structural damping
(thermoelastic damping is shown to be negligible). Regarding the air damping mechanism it is worth to
observe that in the narrow gap design the lateral damping affecting the drive motion is usually much smaller
than the squeeze damping which, instead, affects the sense motion, and this in turn produces a very different
response of the system if compared to the wide gap configuration. In both the cases the device sensitivity
improves when the beam is designed with a square cross section; however, the narrow gap design has the
advantage of being much less affected by small manufacturing errors. Indeed, such errors may led to beam
aspect ratios slightly different from 1, which in the case of the wide gap configuration, we show to cause a
tremendous response reduction. We also show that, in the narrow gap configuration, the presence of the air
layer between the forks and the substrate can be regarded as an additional design parameter, that, if properly
chosen, may lead to a reduction of the dynamic error of the device and can be utilised by the designer to
modify the instrument range of linearity.
2. Dynamic model

The vibrating microgyroscope has a double tuning fork quartz structure, the ‘drive tines’ and the ‘sense
tines’. Both of them are supported by a frame connected by two flexures to a central mounting post (attached
to the rotating substrate) as shown in Fig. 1. The two drive tines are piezoelectrically actuated and they
oscillate along the x-axis. When the substrate is rotating about the y-axis, the Coriolis force produces an
alternating out of plane bending of the drive tines, and in turn a reaction torque. This torque puts in rotation
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Fig. 2. The electrode configuration for the drive mode (a) and for the sense mode (b).

Fig. 1. The scheme of the quartz angular rate sensor (a) and the tuning fork of the drive mode (b).
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the frame and, as a consequence, generates the out of plane motion of the sense tines, thus producing an
output piezoelectric signal proportional to the angular velocity to be measured.

In this work, two sources of energy dissipation have been considered affecting the behaviour of the device,
the air damping and the structural damping. The thermoelastic damping, as shown in Ref. [17], can instead be
reduced to zero with an optimal choice of the beam geometrical dimensions and for this reason it has not been
included in the analysis. As already stated above, we analyse two different configurations of the
microgyrometer, which we refer to as the ‘wide gap’ and ‘narrow gap’ designs. From the point of view of
damping factors, the main differences between the two configurations are that in the case of the narrow gap
design the lateral damping is much smaller than the squeeze damping, and that the air pressure, which the
instruments operates at, is very small. In such situations of very low pressure conditions the structural damping
can be comparable to the air damping and has to be properly taken into account. When, instead, the instrument
is supposed to work at atmospheric pressure the structural damping can be neglected [1,8,10,12–14].

Both the actuation and the sensing mechanisms of the device utilise the piezoelectric effect, that couples the
strain field of a structure with the electric field through the well-known constitutive equation of electro-
elasticity. The configuration of the electrodes on the surface of the quartz tines is different for the two modes
as shown in Fig. 2. The piezoelectrically actuated bending of the drive tines is obtained in a plane parallel to
the substrate, while the bending of the sense tines, which produces the electric field to be detected, occurs
perpendicularly to the substrate. The externally applied electrical potential is time dependent, of the form
V ðtÞ ¼V sinðotÞ, where the (radian) excitation frequency o is generally chosen equal to the first bending
natural frequency of the drive tines in the xy-plane.

The two drive tines, as well as the sense beams, are supposed to be symmetric with respect to the yz-plane.
As a consequence, the dynamic behaviour of only one drive tine needs to be investigated. The drive tine is
described as the beam of length L, shown in Fig. 3. The vertical displacement of the beam support, which is
related to the torsional rotation of the frame, is shown to be negligible, and does not need to be taken into
account. Indeed, the corresponding mechanical impedance is very high as a consequence of the relatively big
mass of the frame, the small stiffness of the flexures and the high value of the excitation frequency. This
conclusion is in agreement with Ref. [15] where it is shown that the amplitude of the support motion is several
orders of magnitude smaller than the free end motion amplitude of the tines and a rough estimate gives
10�11 m for the amplitude of the support and 10�8 m for the amplitude of the free end. For this reason, the
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Fig. 3. The scheme of one of the two drive tines (a) and the forces acting on the generic section of the beam when the system is rotating

(b). In y ¼ 0, the mechanical impedance is Z0.
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functional design of the beam can be carried out, at a first approximation, by neglecting the interaction with
the frame and by modelling each drive tine as it were actually a cantilever. This allows to write the equilibrium
equations of the beam, in the xy- and yz-planes, as

EJz

q4ux

qy4
þ rqA

q2ux

qt2
¼ qx (1)

EJx

q4uz

qy4
þ rqA

q2uz

qt2
¼ qz (2)

where E ¼ 1=Syy (SIJ being the generic compliance coefficient, as explained ahead) and rq are the Young
modulus and the density of quartz, respectively, Jz and Jx are the inertia moments of the beam with respect to
neutral axes, in the xy- and yz-planes, respectively, and A ¼WH is the beam section area (Fig. 3b).

When the device is rotating, two types of mechanical forces act on the generic beam element of length dy

and mass dm ¼ rqAdy. These forces are the apparent forces and the damping forces due to the presence of the
air. The centrifugal force and the Euler force are both negligible since they are proportional to O2 and _O,
respectively, where O is the rotation rate of the substrate which the beam is connected to. Hence, only
the Coriolis force has to be taken into account, that gives rise to the two components per unit length
q1x ¼ �2rqAO _uz and q1z ¼ 2rqAO _ux.

The contribution of structural damping is taken into account in the usual way, by simply replacing in the
equations of motion the real elasticity modulus E with the complex one E0 ¼ Eð1þ iZsÞ, where Zs is the
structural damping coefficient (for quartz Zs � 5� 10�6 [18]).

2.1. Wide gap design

In the case of the wide gap design, the device operates at atmospheric pressure. In order to describe the
effects of the fluid flow around the beam, we use the string-of-beads model, which is often utilised for micro-
machined cantilevers and resonators [19–22]. The basic idea is to model the vibrating beam as constituted of a
certain number of spheres of diameter 2r. The diameter 2r of the spheres is equal to the length of that edge of
the beam cross section which is perpendicular to the beam motion direction. In our case 2r ¼ H in the drive
motion case and 2r ¼W in the sense motion case. The drag Fv;i acting on the i-th sphere can be evaluated by
recalling the Landau solution of damping of a harmonically vibrating sphere immersed in a viscous fluid [23].
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The solution reads

Fv;i ¼ �ð6pZrþ 3pr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2raZo

p
Þvi (3)

where Z and ra are air viscosity and density, o is the oscillation frequency of the element, r is the sphere radius
and vi is the sphere velocity. This approximation is in good agreement with experimental data as shown in
Refs. [19,20]. As a consequence, the damping forces per unit length in the two planes can be simply written as

q2x ¼
1

H
Fv;i

����
2r¼H

¼ � 3pZþ
3

4
pH

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2raZo

p� �
_ux (4)

q2z ¼
1

W
Fv;i

����
2r¼W

¼ � 3pZþ
3

4
pW

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2raZo

p� �
_uz (5)

2.2. Narrow gap design

In the case of narrow gap design, high sensitivity of the instrument can be achieved only if the
microgyroscope operates at low pressures (� 150022000 Pa), which in turn makes it necessary to take into
account the effect of rarefaction on air viscosity. This is needed since the mean free path l ¼ ðZ=pÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pRT=2

p
of

the molecules (p, T, R and Z are pressure, temperature, elastic constant and viscosity of gas, respectively)
rapidly grows as the pressure is decreased, and when l becomes comparable to the air gap dimension d, the
fluid cannot be longer treated as a continuum body and a correction for the fluid viscosity has to be employed.
This is indeed our case since the Knudsen number Kn ¼ l=d is relatively high (� 5), so that it is necessary to
calculate the effective air viscosity by means of the formula [24,25]

Zeff ¼
Z

1þ 9:638K1:159
n

(6)

The value utilised in the paper is Zeff ¼ 3:3� 10�7 N sm�2.
To describe the lateral and squeeze damping due to air–beam interaction we have employed the Reynolds

equation [26], that in the xz-plane takes the form

q
qx

rh3

12Zeff

qp

qx

� �
¼

qðrhÞ

qt
(7)

where r and p are the density and the pressure of the air, respectively. Assuming an incompressible fluid film,
the following air pressure distribution in the xz-plane can be obtained by integrating Eq. (7) with boundary
conditions pð�W=2; tÞ ¼ pðW=2; tÞ ¼ 0

p ¼
6Zeff _h

h3
x2 �

W 2

4

� �
¼ �

6Zeff _uz

ðd � uzÞ
3

x2 �
W 2

4

� �
(8)

where h ¼ d � uzðy; tÞ, as shown in Fig. 3b, is the difference between the distance d between the beam and the
substrate in static conditions and the beam vertical displacement uzðy; tÞ. In what follows we will simply use
h � d, because typically the ratio between juzj and d is order of 10�2 [24]. Since, indeed, the maximum juzj-values
found in current applications are 10–60nm and since d can be 125mm, the approximation is certainly justified.

When the beam oscillates in a plane parallel to the substrate, a lateral viscous damping arises, due to the
shear stress [26], given by

tzx;fl ¼ Zeff
qux;fl

qz

����
z¼H=2

¼ �
h

2

qp

qx
�

Zeff
h
_ux �

6Zeff _uz

d2
x�

Zeff
d
_ux (9)

where ux;fl is the fluid velocity component along the x-axis. This allows us to calculate the lateral damping
force per unit length acting on the beam as

q2x ¼ �
ZeffW

d
_ux (10)
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For the sense motion, the squeeze damping force per unit length is instead

q2z ¼ �
ZeffW

3

d3
_uz (11)

2.3. Piezoelectric actuation

Let us recall the constitutive equation of electro-elasticity, written in the form

�I ¼
X

J

SIJsJ þ
X

j

EjdjI (12)

where �I is the strain, SIJ are the compliance coefficients, sJ is the stress, Ej is the electric field and djI are the
piezoelectric strain coefficients.

To determine the equivalent stress caused by the electric field, we have firstly considered the simple case of
the electrode configuration producing in the beam cross section an homogeneous electric field. In Ref. [27] it
has been shown that the equivalent mechanical stress, along the y-axis, is in this case:

s̄y ¼ �
dxy

Syy

Ex (13)

where the ratio dxy=Syy is the ‘effective stress coefficient’.
Secondly, since the electric field due to the external applied potential is available in literature in the case of

the drive mode configuration of electrodes represented in Fig. 2a [15], by using Eq. (13) we have calculated the
equivalent mechanical bending moment acting on the beam cross section as

MpiezoðtÞ ¼

Z H=2

�H=2

Z W=2

�W=2
s̄yxdxdz ¼ ImðM̄piezo e

iotÞ (14)

and, therefore, defined the amplitude of the piezoelectric actuation as Apiezo ¼ �M̄piezo=ðEJzÞ.

2.4. Model equations

The final form of the equations of motion are thus given by

rqA
q2ux

qt2
þ bx

qux

qt
þ 2rqAO

quz

qt
þ E 0Jz

q4ux

qy4
¼ 0 (15)

rqA
q2uz

qt2
� 2rqAO

qux

qt
þ bz

quz

qt
þ E 0Jx

q4uz

qy4
¼ 0 (16)

where in the wide gap case one has bx ¼ 3pZþ ð3=4ÞpH
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2raZo

p
and bz ¼ 3pZþ ð3=4ÞpW

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2raZo

p
, whereas in

the narrow gap case bx ¼ ZeffW=d and bz ¼ ZeffW
3=d3. The general steady-state solution of the homogeneous

system of partial differential equations (15, 16) has the form

uxðy; tÞ ¼ UxðyÞ e
iot (17)

uzðy; tÞ ¼ UzðyÞ e
iot (18)

and the needed boundary conditions are:

uxð0; tÞ ¼ 0;
qux

qy
ð0; tÞ ¼ 0;

q2ux

qy2
ðL; tÞ ¼Apiezo e

iot;
q3ux

qy3
ðL; tÞ ¼ 0 (19)

�EJxq
3uzð0; tÞ=qy3

quzð0; tÞ=qt
¼ Z0;

quz

qy
ð0; tÞ ¼ 0;

q2uz

qy2
ðL; tÞ ¼ 0;

q3uz

qy3
ðL; tÞ ¼ 0 (20)
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The third of conditions (19) is related to the piezoelectric actuation as discussed in Section 2.3, while the
complex quantity Z0 in the first of conditions (20) represents the mechanical impedance of the section where
the beam is connected to the frame (y ¼ 0). This quantity is a function of the excitation frequency o, besides of
the geometry and the mass, stiffness and damping distributions of the remaining part of the whole device. As
Z0 approaches infinity, the first of conditions (20) becomes rigid, i.e. uzð0; tÞ ¼ 0. We utilise this formulation of
the boundary condition in the model since, as stated above, the motion of the mass of the frame is negligible in
comparison to the motion of the free end of the beam.

3. Dimensionless formulation

We can rephrase the model in a dimensionless form considering as fundamental quantities the beam length
L, the excitation frequency o and the quartz density rq. After simple calculations one gets

q2ũx

qt2
þ zx

G
m

1

r1k1

qũx

qt
þ 2

O
o
qũz

qt
þ

1þ iZs

r21k
2
1

q4ũx

qỹ4
¼ 0 (21)

q2ũz

qt2
þ zz

G
m

1

r1k1

qũz

qt
� 2

O
o
qũx

qt
þ

1þ iZs

r21k
2
1

m2
q4ũz

qỹ4
¼ 0 (22)

where ũx ¼ ux=L, ũz ¼ uz=L, t ¼ ot, ỹ ¼ y=L, G ¼ mZeffL
2=ðrqAcrzÞ, m ¼ oðzÞn;1=o

ðxÞ
n;1 ¼ H=W , r1 ¼ o=oðxÞn;1. The

first natural frequency oðxÞn;1, in the xy-plane is

oðxÞn;1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1

L2

� �2
EJz

rqA

s
¼ crz

k1

L2
(23)

with k1 ¼ ð1:875104Þ
2 in the cantilever beam case (Euler–Bernoulli theory), c2 ¼ E=rq, r2z ¼ Jz=A. In

particular, in the wide gap design case one has the damping coefficients zx ¼ 3pw½1þ ð
ffiffiffi
2
p

=4Þm

ð

ffiffiffiffiffiffiffiffiffiffiffiffi
ra=rq

q
Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gw=r1k1

p
Þ� and zz ¼ 3pw½1þ ð

ffiffiffi
2
p

=4Þð
ffiffiffiffiffiffiffiffiffiffiffiffi
ra=rq

q
Þ=ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gw=r1k1

p
Þ�, with w ¼ Z=Zeff , while in the narrow

gap design case they are zx ¼ z and zz ¼ z3, with z ¼W=d. Observe that the quantity r1 is always equal to 1,
during operation, in order to get the amplitude of the drive motion highly magnified. The boundary conditions
(19) and (20) can be rephrased in dimensionless terms as

ũxð0; tÞ ¼ 0;
qũx

qỹ
ð0; tÞ ¼ 0;

q2ũx

qỹ2
ð1; tÞ ¼ApiezoL eit;

q3ũx

qỹ3
ð1; tÞ ¼ 0 (24)

ũzð0; tÞ ¼ 0;
qũz

qỹ
ð0; tÞ ¼ 0;

q2ũz

qỹ2
ð1; tÞ ¼ 0;

q3ũz

qỹ3
ð1; tÞ ¼ 0 (25)

The analytical solution of the homogeneous partial differential equations (21, 22) is reported in Appendix B.
It is worth to notice that the non-dimensional parameter G can be written as

G ¼ m
Zeff
rqA

L2

crz

¼
ffiffiffiffiffi
12
p Zeff

rqcW

L

W

� �2

(26)

and hence it can be easily considered only depending on viscosity if the other quantities are kept constant. For
this reason, in the following considerations, changes of the beam cross section aspect ratio m will be obtained
by varying H values only, thus not affecting the value of G.

4. Results

We will focus on the dynamics of the free end of the beam (ỹ ¼ 1) and characterise the behaviour of the
device comparing the dynamical response of narrow gap case with that of the wide gap design. We define an
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Table 1

Data utilised for creating graphics.

Quantity Value

Zeff 3:3� 10�7 N sm�2

Z 1:8� 10�5 N sm�2

W 0.45mm

L 6mm

d 1mm
E 7:81� 1010 Nm�2

rq 2650kgm�3

V 5V
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additional parameter u ¼ jŨ z=Ũxj which is simply the ratio between the amplitude of the sense motion and the
amplitude of the drive motion. Table 1 shows the data utilised in the analysis.

4.1. Air damping influence

In the case of narrow gap design the air damping of the drive motion is significantly different from that of
the sense motion: The ratio between the damping coefficients of the two motions, indeed, is given by zz=zx ¼

z2 ¼ ðW=dÞ2 with z generally higher than 100. In the wide gap design, instead, zz=zx � 1 and it is exactly 1 for
a square cross section, i.e. when m ¼ 1. The large difference between zz and zx in the narrow gap case strongly
reduces the amplitude of the sense motion [8], so that at a first sight the wide gap design should be preferred.
However, as we will show in Sections 4.4 and 4.5, the wide gap design cannot be utilised for values of m very
close to 1, since when m ¼ 1 the range of linearity and the bandwidth of the instrument are strongly reduced.
As a consequence, the only reason for choosing the wide gap design, i.e. that of having m ¼ 1, cannot actually
be utilised, thus making the narrow gap design much more interesting.

The performances of narrow gap design, indeed, can be chosen and improved by properly adjusting the
additional ‘free’ parameter z. As shown in Fig. 4, the influence of z on the drive motion is almost absent. The
parameter z significantly influences only the sense motion as shown in Fig. 5, where the ratio u ¼ jŨ z=Ũxj is
represented as a function of r1 for different values of z. It is interesting to observe that, since the narrow gap
design is always characterised by u51, the x-component of the Coriolis force can be neglected in comparison
to its z-component. The same conclusion is not always true in the case of wide gap design, as we will show in
Section 4.4.

4.2. Aspect ratio influence

Fig. 6a shows the amplitude jŨxð1Þj as a function of z, for r1 ¼ 1 and different values of m (m ¼ 0:9; 1; 1:1). It
is shown that, when a rectangular shape design is considered, it is better to choose m41 instead of mo1 since
in the former case the amplitude jŨxð1Þj of the free end of the beam is a bit larger. Observe that this effect is
felt more for high values of z, because in these cases the variations of the damping coefficient Gz=ðmr1k1Þ

produced by m are more significant.
The uz-amplitude behaviour is analysed, for the same values of r1 ¼ 1 and m ¼ 0:9; 1; 1:1, in Fig. 6b, which

shows that for small z values, jŨ zð1Þj, as expected, strongly increases when m ¼ 1, due to the matching of
resonant frequencies. However, what is more important is that an increase of the parameter z determines a
reduction of the amplitude jŨ zð1Þj which is much higher for a square cross section (m ¼ 1) than for ma1, e.g.
for m ¼ 0:9 or 1.1. Observe also, that at large z (say z4350) choosing m ¼ 1:1 gives better results than m ¼ 1, so
that a perfect square cross section cannot always guarantee a better performance.

Fig. 7 compares the behaviour of the wide and narrow gap instrument configurations. The narrow gap
solution shows a smoother behaviour in the immediate surrounds of m ¼ 1, if compared to the wide gap
configuration, which in turn shows the amplitude of the sense motion depending very sharply on m values (see
Fig. 7a). Since, manufacturing errors are always present, a perfect square cross section is impossible to obtain,
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Fig. 4. Narrow gap design: the amplitude–frequency relationship for lateral vibration, with ỹ ¼ 1, m ¼ 1, O ¼ 1 rad s�1, considering the

secondary peaks and only the first one: it is evident the small influence of z.

L. Soria et al. / Journal of Sound and Vibration 322 (2009) 78–9786
and this will correspond to a strong signal drop (e.g. one has jŨ zð1Þj ¼ �63 dB if m ¼ 1 that becomes jŨ zð1Þj ¼
�91:2 dB for m ¼ 1:001) meaning that the potential advantage of the wide gap configuration, i.e. very small
damping and, therefore, very large amplitude of the sense motion, cannot actually be obtained.

4.3. Structural damping

Structural damping is often neglected when studying these kind of devices, since it is generally negligible in
comparison to the air damping. However, when the air pressure is low enough the two sources of energy
dissipation may be similar and hence the structural damping has to be taken into account. This, as already
briefly discussed before, is the case of a tuning fork microgyroscope in a narrow gap configuration. To be more
precise, the structural damping has to be taken into account when studying the drive motion of the beam since
in this case the air damping (which is related to the parameter z) is very small, but can be neglected when
investigating the sense motion since in this case the damping factor is z2 times higher. As an example, given
r1 ¼ 1, m ¼ 1 and z ¼ 300, one obtains that the air damping term in the sense motion case is
zzG=ðmr1k1Þ ¼ 0:24, much greater than the structural term m2Zs=ðr1k1Þ

2
¼ 4:04� 10�7. On the other hand,

for the drive motion, one has zxG=ðmr1k1Þ ¼ 2:67� 10�6 and Zs=ðr1k1Þ
2
¼ 4:04� 10�7 that are here

comparable. In the case of wide gap design similar arguments show that the structural damping has to be
included in the equations both for the drive and the sense motion.

4.4. Rotation rate influence

In this section we discuss the influence of the rotation rate value O on the instrument response.
Fig. 8 shows the quantity jŨ zð1Þj as a function of O, for different values of z and m and for the two different

configurations of the instrument (wide gap and narrow gap designs). In the wide gap design, as shown in
Figs. 8a and b, the only geometrical parameter that may influence the relation between juzj and O is m. Fig. 8b
clearly shows that when m ¼ 1, because of a very high coupling effect, the range of linearity of the instrument is
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Fig. 5. Narrow gap design: the uð1Þ–frequency relationship, with ỹ ¼ 1, O ¼ 1 rad s�1, for m ¼ 0:9 (a), m ¼ 1 (b) and m ¼ 1:1 (c).
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strongly reduced with respect to what is observed for m ¼ 0:9 or 1.1 (Fig. 8a), and even more if compared to
the narrow gap design (Figs. 8c and d). The very limited range of linearity of the wide gap design at m ¼ 1 is
one of the main reasons to avoid the square cross section in practical applications.

The case of the narrow gap design is instead different. Figs. 8c and d show indeed that by properly choosing
the free parameter z it is possible to adjust the range of linearity of the instrument. In particular, if the aim of
the instrument is to measure high rotation rates then z has to be increased. If high precision at low rotation
rates is, instead, important, z has to be lowered to achieve the needed improvement of the instrument
sensitivity juzj=O.
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Fig. 6. Narrow gap design: the amplitude–z relationship for lateral vibration (a) and for vertical vibration (b), with ỹ ¼ 1, r1 ¼ 1,

O ¼ 1 rad s�1, for different values of m.
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4.5. The bandwidth– m relationship

Here we describe the sensor bandwidth (BW ) dependence on the mode coupling (i.e. on the beam aspect
ratio m), either in the case of constant angular rotation rate O0 of the instrument (in this case the bandwidth
will be referred to with the symbol BWO0

) or when the rotation rate OðtÞ to be measured is time-dependent
(BWOðtÞ). Both the wide and narrow gap designs will be analysed. The bandwidth BWO0

is simply defined as
the difference between the upper and lower frequencies f B and f A located on the two opposite sides of the
resonant peak, where a 3 dB drop of the sense response amplitude occurs. The latter BWOðtÞ is, instead,
evaluated considering the system response to the generic excitation OðtÞ ¼ O0 cosð2pf rottÞ, and represents the
maximum extension of the frequency range in which f rot must be contained in order to avoid a change
DŪzðỹ; f rotÞ of the amplitude (the so called dynamic error) greater than �3 dB [28]. The derivation of the
mathematical expressions of the two different bandwidths is reported in Appendix A.

Fig. 9 shows the BWO0
vs. m relations for the wide gap design (Fig. 9a) and for the narrow gap one (Fig. 9b).

The particular non-monotonic behaviour of BWO0
can be explained by first observing that, in a system with

two close modes of vibration, the bandwidth around one of the two peaks is affected by the relative position of
the two natural frequencies, and this influence is stronger if the two peak amplitudes are of the same order of
magnitude. This indeed may cause the behaviour observed in Fig. 9a where as m approaches 1 from the left or
from the right, a step variation in the quantity BWO0

ðmÞ is observed. The reason of this peculiar behaviour is
explained in what follows. For each given value of m, BWO0

is the amplitude of the frequency range in which
the condition MzX

1
2
Mzjmax is verified, where Mz is the mechanical energy of the system. Between the two

resonant peaks, the mechanical energy Mz has, of course, a minimum Mzjmin. If the energy minimum Mzjmin

is greater than 1
2
Mzjmax, there is no frequency value between the two resonant peaks at which a drop of 3 dB in

the amplitude response of the system can occur. In this case the range of frequencies corresponding to the
bandwidth BWO0

must contain both the resonant peaks. This happens of course for m close enough to 1. As m
moves far from the unit value the two frequency peaks will progressively move far from each other and the
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Fig. 7. The amplitude–m relationship for vertical vibration in the wide gap design (a) and in the narrow gap one (b), with ỹ ¼ 1, r1 ¼ 1,

O ¼ 1 rad s�1.
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mechanical energy minimum Mzjmin will slowly decrease toward the value 1
2
Mzjmax. The resulting bandwidth

BWO0
will still contain the two resonant peaks but will slowly increase because of the increased distance

between the peaks. However, as the quantity m moves further and further from 1, at a certain value of m the
Mzjmin will reach the value 1

2
Mzjmax. When this happens the frequency range corresponding to the bandwidth

BWO0
will now contain only one resonant peak and therefore will undergo a step reduction as shown by the

dashed vertical lines in Fig. 9a. The figure also shows that for m very close to 1, the BWO0
ðmÞ function has a

minimum which is a consequence of the enhanced sharpness of the amplitude vs. frequency curve, caused by
the superposition of the two resonant peaks.

Fig. 9b shows what happens when the instrument configuration is that of the narrow gap design. In this case
juxjmaxbjuzjmax as the squeeze motion is strongly damped, thus the system behaves as if it were only one
resonant peak. What is important to observe is that the bandwidth increases with z and decreases with m. This
is related to the influence of the two parameters z and m on the damping coefficient z3G=ðmr1k1Þ of the sense
motion. When z increases or m decreases, indeed, the uz-amplitude vs. frequency curve becomes less sharp and
hence BWO0

increases.
Figs. 10 and 11 show, respectively, the bandwidth BWOðtÞ vs. m relationship and the dynamic error evaluated

at the beam end DŪzð1; f rotÞ as a function of f rot. The wide gap design is represented by a dashed line, whereas
the narrow gap case is represented, for different values of z, by the continuous lines. The figures show that the
bandwidth BWOðtÞðmÞ always has a minimum BWOðtÞjmin for values of the aspect ratio m which are very close to
1 (both for the wide and narrow gap configurations). The case of the wide gap design, in a narrow band
around m ¼ 1, is reported in the inset of Fig. 10, which shows how small BWOðtÞ becomes in these conditions.
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Fig. 8. The amplitude–O relationship for vertical vibration with ỹ ¼ 1, r1 ¼ 1, in the wide gap design for m ¼ 0:9, m ¼ 1:1 (a), m ¼ 1

(b), and in the narrow gap one for m ¼ 1 (c) and m ¼ 1:1 (d).

L. Soria et al. / Journal of Sound and Vibration 322 (2009) 78–9790
This again explains why it is not convenient to use a square cross section with this kind of instrument
configuration.

For z-values greater than 100, the narrow gap design has instead a much better behaviour in comparison to the
wide gap case already at m � 1. The behaviour is further improved as z is increased whatever is the value of m.

Fig. 11 shows the dynamic error DŪz as a function of the frequency f rot and for different values of
the parameters m and z for both the wide gap and narrow gap designs. Observe that for m ¼ 1, as shown in
Fig. 11a the dynamic error is always negative and always decreases as f rot is increased. The inset in the figure
shows the behaviour of the wide gap design. This configuration is characterised by a very fast decrease of the
dynamic error from zero to values smaller than �3 dB thus leading to a very small bandwidth BWOðtÞ, as
already anticipated by Fig. 10. If one changes the value of m to, e.g. m ¼ 1:1, as shown in Fig. 11b, the dynamic
error instead is positive and increases with f rot. This time a slower increase of the dynamic error from zero is
observed for both the device configurations (wide and narrow gap). However, one immediately notices that
only in the case of the narrow gap design, the dynamic error can be strongly reduced, for any given desired
value of the bandwidth BWOðtÞ, by means of an appropriate choice of the parameter z, which however cannot
be exaggeratedly increased, in order to avoid an excessive reduction of the signal response amplitude. As an
example, given BWOðtÞ � 600Hz, one could choose m ¼ 1:1 and z ¼ 300, or, to have a less damped design
solution, z ¼ 250 with m ¼ 1:06 (Fig. 11c).

The possibility of adjusting z represents the main advantage of the narrow gap configuration in comparison
to the wide gap solution.

5. Conclusions

In this work we have developed an accurate analytical model to describe the dynamics of a double tuning
fork quartz structure microgyroscope. Two designs of the sensor have been considered, different from each
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Fig. 9. BWO0
2m (stationary angular rate case) relationship for the wide gap design (a) and for the narrow gap one (b), with ỹ ¼ 1, r1 ¼ 1,

O0 ¼ 1 rads�1.

Fig. 10. BWOðtÞ2m (harmonic rotation case) relationship for the wide gap design (dashed line) and for the narrow gap one (continuous

lines), with ỹ ¼ 1, r1 ¼ 1, O0 ¼ 1 rad s�1.
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other for the measure of the gap between the forks and the substrate. In the former case, the ‘wide gap’ design,
the instrument operates at atmospheric pressure and since the gap is large enough, the presence of the
substrate can be neglected on the evaluation of the drag force due to air viscosity. In the latter case, the
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Fig. 11. DŪz–f rot relationship, for m ¼ 1 (a), m ¼ 1:1 (b) and for different values of z and m (c), for both the wide gap design (dashed lines)

and the narrow gap one (continuous lines), with ỹ ¼ 1, r1 ¼ 1, O0 ¼ 1 rad s�1.

L. Soria et al. / Journal of Sound and Vibration 322 (2009) 78–9792
‘narrow gap’ design, one has a really narrow structure–substrate gap and, hence, since the air damping is
strongly influenced by the height of the gap, the device has to run vacuum-packed to have the output of the
instrument strong enough. In this last case, the viscous damping in the drive (lateral) motion is very different
from that in the sense (squeeze) motion, and this difference is largely affected by the additional geometrical
parameter z, which is the ratio between the width of the beam and height of the air gap.

In the wide gap design the air damping is almost the same along both the directions and has been modelled
by adapting to our case the Landau’s solution for a harmonically vibrating sphere. In both the cases we have
also taken into account the influence of the structural damping, which has been shown to be rather negligible,
except when the air damping coefficient is very small.

Since the device is supposed to be symmetric, we have studied the behaviour of one of the two beams of the
drive mode, and described it as a 1D continuum elastic body. The mathematical model has been written in a
unified form, which holds for both the designs considered, making possible to compare their performances.
We find out that the narrow gap design is much better than the other one because of the additional design
parameter z, which allows the designer to (i) lower the dynamic error of the instrument, once the bandwidth is
given and (ii) modify the range of the rotating rate where the response of the instrument is linear.

In particular, once the needed amplitude of the sense signal is obtained by choosing the correct air pressure
value, one can regulate z to modify the dynamic error of the instrument in a certain bandwidth. Also the
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designer has the possibility of adjusting the sensitivity of the instrument by still properly choosing z, e.g. if high
rotation rates have to be measured, high z-values have to be chosen, whilst if high precision at low rotation
rates is needed, lower damping, i.e. smaller values of z, will produce an improvement of the sensitivity.
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Appendix A. The system bandwidth

A.1. The bandwidth in the case of stationary rotation

When the gyroscope has to work at constant angular rate O ¼ O0, the bandwidth is usually defined as the
modulus of the difference between the lower and upper frequency points f A and f B close to the drive motion
resonant peak, where the time-averaged mechanical energy of the sense motion assumes the half value of the
maximum observed in resonant condition, hence, where there is a 3 dB drop of the sense response amplitude.
With the quantities defined above, we have that BWO0

¼ jf A � f Bj ¼ jrA � rBjo
ðxÞ
n;1=2pHz. The importance of

this bandwidth evaluation is related to the difficulty of achieving a perfect matching between the excitation
frequency and the natural frequency of the drive motion. The possible reasons can be small deviations of the
natural frequency produced by imperfections coming from the fabrication process, temperature fluctuations or
errors related to the control strategy of the actuation. Hence, it is necessary to know the limits of the frequency
fluctuations that produce a decrease of the output motion amplitude still utilisable for the angular rate
evaluation. In the results (Section 4.5) it has been shown the trend of this kind of system bandwidth, as the
modes become closer (i.e. the BWO0

2m relation).
A.2. The bandwidth in the case of harmonic rotation

If the input angular rate is time dependent, the dynamic behaviour of the gyroscope is different. In
particular, there is only a limited range of frequencies, again often referred to as ‘bandwidth’, in which the
sensor is able to measure the amplitudes of the corresponding harmonics within an acceptable small error,
usually referred to as ‘dynamic error’ or ‘amplitude error’ in the technical literature. To evaluate this type of
bandwidth, the system response to the generic harmonic OðtÞ ¼ O0 cosð2pf rottÞ has to be calculated. The
Coriolis term of the output motion equation (22) is in this case

2
O
o
qũx

qt
¼ i

O0

o
ŨxðỹÞ½e

ið1�rrot=r1Þt þ eið1þrrot=r1Þt� (A.1)

where rrot ¼ 2pf rot=o
ðxÞ
n;1. It is possible to show that [29] multiplying the system response ũzðỹ; t; rrotÞ by a

carrier that has known phase and frequency o ¼ oðxÞn;1 and removing the high frequency components, by
filtering after the demodulation, the output is

ūzðỹ; t; rrotÞ ¼ Ūzðỹ;rrotÞ cosðrrottþ fÞ (A.2)

where Ūzðỹ;rrotÞ ¼ ðjŨ
ð�Þ

z ðỹ;rrotÞj þ jŨ
ðþÞ

z ðỹ;rrotÞjÞ=2, being jŨ
ð�Þ

z ðỹ;rrotÞj the amplitudes of the responses
ũð�Þz ðỹ; t; rrotÞ to the two parts of the whole Coriolis term (A.1).

It is now possible to define the absolute dynamic error due to the harmonic angular rate as

DŪzðỹ;rrotÞ ¼ Ūzðỹ;rrotÞ � Ūzðỹ; 0Þ (A.3)

where Ūzðỹ; 0Þ ¼ Ūzðỹ;rrot ¼ 0Þ. Hence the bandwidth BWOðtÞ is the range in which the angular rate frequency
can change giving rise to an amplitude error DŪzðỹ;rrotÞ smaller than �3 dB.
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Appendix B. Analytical solutions of the governing equations

B.1. Coupled system solution

In this section two different approaches to the analytical solution of the homogeneous system of partial
differential equations (21) and (22) are presented. If the x-component of the distributed Coriolis force is not
neglected, in both the wide gap and narrow gap cases, we obtain the following coupled system of the unknown
complex functions ũxðỹ; tÞ and ũzðỹ; tÞ

q2ũx

qt2
þ zx

G
m

1

r1k1

qũx

qt
þ 2

O
o
qũz

qt
þ

1þ iZs

r21k
2
1

q4ũx

qỹ4
¼ 0 (B.1)

q2ũz

qt2
þ zz

G
m

1

r1k1

qũz

qt
� 2

O
o
qũx

qt
þ

1þ iZs

r21k
2
1

m2
q4ũz

qỹ4
¼ 0 (B.2)

Let ũðỹ; tÞ ¼ fũxðỹ; tÞ; ũzðỹ; tÞgT. The system can be conveniently rephrased in matrix notation as

I2ũtt þ C̃ũt þ K̃ũỹỹỹỹ ¼ 0 (B.3)

where

C̃ ¼

zx

G
m

1

r1k1
2
O
o

�2
O
o

zz

G
m

1

r1k1

2
6664

3
7775; K̃ ¼

1þ iZs

r21k
2
1

1 0

0 m2

" #

and I2 is the second-order identity matrix.
The system has to be solved by taking into account a proper set of boundary conditions. In the cantilever

beam case, they are ũð0; tÞ ¼ 0; qũð0; tÞ=qỹ ¼ 0, q2ũð1; tÞ=qỹ2 ¼ fApiezoL eit; 0gT, q3ũð1; tÞ=qỹ3 ¼ 0.
Since the searched solution is the steady bending motion, in two planes, of a forced vibrating beam, with

excitation frequency equal to o, no initial conditions are needed and a general solution of the form Ũ eiðt�kLỹÞ

has to be considered, where k is the complex wavenumber. By substituting this kind of solution in the system,
one gets

ð�I2 þ iC̃þ k̃
4
K̃ÞŨ ¼ 0 (B.4)

where k̃ ¼ kL. Multiplying the whole equation by K̃
�1
, one obtains the following eigenvalue problem

½K̃
�1
ðI2 � iC̃Þ � k̃

4
I2�Ũ ¼ 0 (B.5)

Let ðk̃
4
Þi and Wi, with i ¼ 1; 2, be the eigenvalues and the corresponding eigenvectors and kij , with j ¼ 1; 4,

the four complex roots of the i-th eigenvalue. The solution can be written as

ũðỹ; tÞ ¼
X2
i¼1

Wi

X4
j¼1

Uij e
iðt�k̃ ij ỹÞ (B.6)

where the complex constants Uij have to be evaluated by taking into account the boundary conditions.

B.2. Uncoupled system solution

If the x-component of the distributed Coriolis force is considered negligible, one is able to solve the two
equations of the system independently one from the other. The first to be solved is, of course, the drive motion
homogeneous PDE

q2ũx

qt2
þ zx

G
m

1

r1k1

qũx

qt
þ

1þ iZs

r21k2
1

q4ũx

qỹ4
¼ 0 (B.7)
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Moving from a general solution of the form Ũx e
iðt�k̃x ỹÞ, with the same meaning of symbols involved,

one gets

k̃
4

x ¼
r21k

2
1

1þ iZs

1� izx

G
m

1

r1k1

� �
(B.8)

and the solution can be written as

ũxðỹ; tÞ ¼
X4
j¼1

Ũxj e
iðt�k̃xj ỹÞ (B.9)

where the complex constants Ũxj have to be evaluated by the boundary conditions: ũxð0; tÞ ¼ 0,
qũxð0; tÞ=qỹ ¼ 0, q2ũxð1; tÞ=qỹ2 ¼ApiezoL eit, q3ũxð1; tÞ=qỹ3 ¼ 0.

The sense motion equation can now be written as

q2ũz

qt2
þ zz

G
m

1

r1k1

qũz

qt
þ m2

1þ iZs

r21k
2
1

q4ũz

qỹ4
¼ i2

O
o

X4
j¼1

Ũxj e
iðt�k̃xj ỹÞ (B.10)

with a known term at the RHS. The general solution is ũzðỹ; tÞ ¼ ũðoÞz ðỹ; tÞ þ ũðpÞz ðỹ; tÞ, sum of the solution

ũðoÞz ðỹ; tÞ of the associated homogeneous equation and of a particular integral ũðpÞz ðỹ; tÞ of the entire equation.

Regarding this last term, since it has to be of the same form of the known term, it is possible to show that

Ũ
ðpÞ

zj

Ũxj

¼

i2
OL2

crz

r1k1ðm2 � 1Þ � i
G
m
zz m2

zx

zz

� 1

� � ¼S (B.11)

and, hence

ũðpÞz ðỹ; tÞ ¼Sũxðỹ; tÞ (B.12)

It is important to stress that the structural damping coefficient Zs does not appear at all in the expression of the
complex value S.

Regarding the solution of the associated homogeneous equation ũðoÞz ðỹ; tÞ, if a solution as Ũ z e
iðt�k̃z ỹÞ is

considered, it is possible to obtain

k̃
4

z ¼
1

m2
r21k2

1

1þ iZs

1� izz

G
m

1

r1k1

� �
(B.13)

and the solution can be written as

ũzðỹ; tÞ ¼
X4
j¼1

ðŨ zj e
�ik̃zj ỹ þSŨxj e

�ik̃xj ỹÞ eit (B.14)

where the complex constants Ũ zj have to be evaluated by considering the appropriate boundary conditions. As
usual, for the cantilever beam they are ũzð0; tÞ ¼ 0, qũzð0; tÞ=qỹ ¼ 0, q2ũzð1; tÞ=qỹ2 ¼ 0, q3ũzð1; tÞ=qỹ3 ¼ 0.

At last a particular case of uncoupled solution has to be considered. It is the one corresponding to m ¼ 1 (i.e.
square cross section) when zx ¼ zz, interesting for the applications only in the case of the wide gap design. In
this situation k̃xj ¼ k̃zj and, hence, the particular integral of the output motion is no more the one reported in
Eq. (B.12), but it is of the form ỹŨ

ðpÞ

zj eiðt�k̃xj ỹÞ. One gets

Ũ
ðpÞ

zj

Ũxj

¼

1

2

OL2

crz

1þ iZs

r1k1
k̃
3

xj

¼Sj (B.15)
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and, hence

ũzðỹ; tÞ ¼
X4
j¼1

ðŨ zj þ ỹSjŨxjÞ e
iðt�k̃xj ỹÞ (B.16)

The uncoupled solution presents, hence, in this particular case, a sort of spatial resonance, since one has the
coincidence of the eigenvalues of the two motions. It is important to point out that, since in the coupled
solution the eigenvalues are always different in value, this phenomenon does not belong to the dynamics of
coupled systems.
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